Files

44 lines
3.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Знакопеременные ряды. Теорема Коши о сходимости абсолютно сходящегося ряда.
## Введение
Знакопеременные ряды — это ряды, члены которых могут быть как положительными, так и отрицательными. Одним из важных понятий в теории рядов является абсолютная сходимость. Теорема Коши о сходимости абсолютно сходящегося ряда утверждает, что абсолютная сходимость ряда влечет за собой его обычную сходимость.
## Абсолютная сходимость
Ряд $\sum_{n=1}^{\infty}a_n$ называется абсолютно сходящимся, если ряд $\sum_{n=1}^{\infty}|a_n|$ сходится.
## Теорема Коши о сходимости абсолютно сходящегося ряда
Теорема Коши утверждает, что если ряд $\sum_{n=1}^{\infty}a_n$ абсолютно сходится, то он также сходится в обычном смысле.
### Формулировка теоремы
Пусть $\sum_{n=1}^{\infty}a_n$ — абсолютно сходящийся ряд, то есть $\sum_{n=1}^{\infty}|a_n|$ сходится. Тогда ряд $\sum_{n=1}^{\infty}a_n$ также сходится.
### Доказательство
Рассмотрим частичные суммы ряда $S_n=\sum_{k=1}^{n}a_k$ и соответствующие частичные суммы ряда из абсолютных значений $T_n=\sum_{k=1}^{n}|a_k|$.
Поскольку ряд $\sum_{n=1}^{\infty}|a_n|$ сходится, то последовательность $T_n$ ограничена. Это означает, что существует такое число $M$, что $T_n\leq M$ для всех $n$.
Теперь рассмотрим разность частичных сумм $S_m-S_n$ для $m>n$:
$|S_m-S_n|=|\sum_{k=n+1}^{m}a_k|\leq\sum_{k=n+1}^{m}|a_k|=T_m-T_n$
Поскольку последовательность $T_n$ ограничена, то и разность $T_m-T_n$ ограничена. Следовательно, последовательность $S_n$ является фундаментальной (последовательность Коши), а значит, сходится.
Таким образом, если ряд $\sum_{n=1}^{\infty}a_n$ абсолютно сходится, то он также сходится в обычном смысле.
## Примеры
1. **Ряд $\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{n^2}$**:
Рассмотрим ряд $\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{n^2}$.
Ряд из абсолютных значений $\sum_{n=1}^{\infty}\frac{1}{n^2}$ сходится, так как это обобщенный гармонический ряд с $p=2>1$. Следовательно, ряд $\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{n^2}$ абсолютно сходится и, следовательно, сходится в обычном смысле.
2. **Ряд $\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{n}$**:
Рассмотрим ряд $\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{n}$.
Ряд из абсолютных значений $\sum_{n=1}^{\infty}\frac{1}{n}$ расходится, так как это гармонический ряд. Следовательно, ряд $\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{n}$ не является абсолютно сходящимся, но он сходится по признаку Лейбница.