**Радиус сходимости** степенного ряда $\sum\limits_{n=0}^\infty a_nx^n$ — это число $R$, такое что ряд сходится для всех $|x|<R$ирасходитсядлявсех$|x|>R$. Радиус сходимости можно найти с помощью формулы Коши-Адамара: $R = \frac 1 {\lim\limits_{n\to\infty} \sqrt[n]{|a_n|}}$ ^92c7d3
**Промежуток сходимости** степенного ряда — это интервал $(-R,R)$, включая возможные точки сходимости на границах интервала. Внутри промежутка сходимости ряд сходится абсолютно, а на границах сходимость ряда может зависеть от значений коэффициентов $a_n$.
Первая теорема Абеля утверждает, что если степенной ряд $\sum\limits_{n=0}^\infty a_nx^n$ сходится в точке $x=R$ (где $R$ — радиус сходимости), то он [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/11#^392550|сходится равномерно]] на интервале $[0,R]$.
Рассмотрим частичные суммы ряда $S_n(x) = \sum\limits_{k=0}^n a_kx^k$. Поскольку ряд сходится в точке $x=R$, то для любого $\varepsilon > 0$ существует такое число $N(\varepsilon)$, что для всех $n \geq N(\varepsilon)$ выполняется $|S(R)-S_n(R)| < \varepsilon$
Поскольку ряд сходится в точке $x=R$, то и разность $\sum\limits_{k=n+1}^{m}|a_kR^k|$ ограничена. Следовательно, последовательность $S_n(x)$ является фундаментальной (последовательность Коши), а значит, равномерно сходится на интервале $[0,R]$.