Files
University-notes/2 курс/1 семестр/Вышмат/Билеты/1 раздел/15.md

62 lines
5.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Теорема об абсолютной и равномерной сходимости степенного ряда. Непрерывность суммы степенного ряда. Вторая теорема Абеля.
## Теорема об абсолютной и равномерной сходимости степенного ряда
### Формулировка теоремы
Пусть $\sum_{n=0}^{\infty}a_nx^n$ — степенной ряд с радиусом сходимости $R$. Тогда:
1. Ряд $\sum_{n=0}^{\infty}a_nx^n$ абсолютно сходится для всех $|x|<R$.
2. Ряд $\sum_{n=0}^{\infty}a_nx^n$ равномерно сходится на любом замкнутом интервале $[a,b]\subset(-R,R)$.
### Доказательство
1. **Абсолютная сходимость**:
Рассмотрим ряд $\sum_{n=0}^{\infty}|a_nx^n|$. Поскольку $|x|<R$, то $|a_nx^n|\leq|a_n|R^n$. Ряд $\sum_{n=0}^{\infty}|a_n|R^n$ сходится, так как $R$ радиус сходимости. Следовательно, ряд $\sum_{n=0}^{\infty}|a_nx^n|$ сходится, что означает абсолютную сходимость ряда $\sum_{n=0}^{\infty}a_nx^n$ для всех $|x|<R$.
2. **Равномерная сходимость**:
Пусть $[a,b]\subset(-R,R)$. Тогда существует такое $r<R$, что $[a,b]\subset[-r,r]$. Рассмотрим ряд $\sum_{n=0}^{\infty}|a_n|r^n$. Поскольку $r<R$, то ряд $\sum_{n=0}^{\infty}|a_n|r^n$ сходится. Следовательно, ряд $\sum_{n=0}^{\infty}a_nx^n$ равномерно сходится на $[a,b]$ по признаку Вейерштрасса.
## Непрерывность суммы степенного ряда
Если степенной ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится на интервале $(-R,R)$, то его сумма $S(x)=\sum_{n=0}^{\infty}a_nx^n$ непрерывна на этом интервале.
### Доказательство
Поскольку ряд $\sum_{n=0}^{\infty}a_nx^n$ равномерно сходится на любом замкнутом интервале $[a,b]\subset(-R,R)$, то его сумма $S(x)$ непрерывна на $(-R,R)$ как равномерный предел непрерывных функций.
## Вторая теорема Абеля
Вторая теорема Абеля утверждает, что если степенной ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится в точке $x=R$ (где $R$ радиус сходимости), то он сходится равномерно на интервале $[0,R]$.
### Формулировка второй теоремы Абеля
Пусть степенной ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится в точке $x=R$. Тогда ряд сходится равномерно на интервале $[0,R]$.
### Доказательство
Рассмотрим частичные суммы ряда $S_n(x)=\sum_{k=0}^{n}a_kx^k$. Поскольку ряд сходится в точке $x=R$, то для любого $\epsilon>0$ существует такое число $N(\epsilon)$, что для всех $n\geq N(\epsilon)$ выполняется:
$|S(R)-S_n(R)|<\epsilon$
Теперь рассмотрим разность частичных сумм $S_m(x)-S_n(x)$ для $m>n$:
$|S_m(x)-S_n(x)|=|\sum_{k=n+1}^{m}a_kx^k|\leq\sum_{k=n+1}^{m}|a_kx^k|\leq\sum_{k=n+1}^{m}|a_kR^k|$
Поскольку ряд сходится в точке $x=R$, то и разность $\sum_{k=n+1}^{m}|a_kR^k|$ ограничена. Следовательно, последовательность $S_n(x)$ является фундаментальной (последовательность Коши), а значит, равномерно сходится на интервале $[0,R]$.
## Примеры
1. **Ряд $\sum_{n=0}^{\infty}\frac{x^n}{n!}$**:
Рассмотрим ряд $\sum_{n=0}^{\infty}\frac{x^n}{n!}$.
Найдем радиус сходимости:
$R=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|\frac{1}{n!}|}}=\infty$
Таким образом, ряд сходится для всех $x\in\mathbb{R}$. Поскольку ряд сходится абсолютно и равномерно на любом замкнутом интервале, его сумма $S(x)=\sum_{n=0}^{\infty}\frac{x^n}{n!}$ непрерывна на всей числовой прямой.
2. **Ряд $\sum_{n=0}^{\infty}x^n$**:
Рассмотрим ряд $\sum_{n=0}^{\infty}x^n$.
Найдем радиус сходимости:
$R=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|1|}}=1$
Таким образом, ряд сходится для всех $|x|<1$ и расходится для всех $|x|>1$. Поскольку ряд сходится абсолютно и равномерно на любом замкнутом интервале $[a,b]\subset(-1,1)$, его сумма $S(x)=\sum_{n=0}^{\infty}x^n$ непрерывна на интервале $(-1,1)$.