Files

43 lines
4.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Определения предела функции двух переменных:
# Предел функции двух переменных
Предел функции одной переменной определяется как значение, к которому функция стремится при приближении аргумента к некоторому значению. В случае функции двух переменных, предел определяется как значение, к которому функция стремится при приближении пары аргументов $(x, y)$ к некоторой точке $(x_0, y_0)$.
## Определение
Пусть $f(x, y)$ - функция двух переменных, заданная в некоторой окрестности точки $(x_0, y_0)$, кроме самой этой точки. Говорят, что функция $f(x, y)$ имеет предел $A$ при $(x, y) \rightarrow (x_0, y_0)$, если для любого $\epsilon > 0$ существует $\delta > 0$ такое, что для всех $(x, y)$ из окрестности точки $(x_0, y_0)$, удовлетворяющих неравенству $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$, выполняется неравенство $|f(x, y) - A| < \epsilon$.
$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall (x, y) \in D \quad 0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \Rightarrow |f(x, y) - A| < \epsilon$
> [!Замечание]
> Знак $\sqrt{(x - x_0)^2 + (y - y_0)^2}$ называется расстоянием между точками $(x, y)$ и $(x_0, y_0)$.
## Примеры
1. Найти предел функции $f(x, y) = \frac{x^2 + y^2}{x^2 - y^2}$ при $(x, y) \rightarrow (0, 0)$.
**Решение**:
Заметим, что функция $f(x, y)$ не определена в точке $(0, 0)$. Поэтому мы должны найти предел функции при приближении к этой точке. Для этого рассмотрим полярные координаты: $x = r \cos \theta$, $y = r \sin \theta$. Тогда $f(x, y) = \frac{r^2}{r^2 \cos 2\theta} = \frac{1}{\cos 2\theta}$. При $(x, y) \rightarrow (0, 0)$ имеем $r \rightarrow 0$. Но при $r \rightarrow 0$ функция $f(x, y)$ не имеет предела, так как знаменатель стремится к нулю при $\theta = \frac{\pi}{4} + \frac{\pi}{2}k$, где $k \in \mathbb{Z}$.
Поэтому предел функции $f(x, y) = \frac{x^2 + y^2}{x^2 - y^2}$ при $(x, y) \rightarrow (0, 0)$ не существует.
2. Найти предел функции $f(x, y) = \frac{x^2 y}{x^4 + y^2}$ при $(x, y) \rightarrow (0, 0)$.
**Решение**:
Заметим, что функция $f(x, y)$ определена в точке $(0, 0)$ и равна нулю. Поэтому мы должны найти предел функции при приближении к этой точке. Для этого рассмотрим полярные координаты: $x = r \cos \theta$, $y = r \sin \theta$. Тогда $f(x, y) = \frac{r^3 \cos^2 \theta \sin \theta}{r^4 \cos^4 \theta + r^2 \sin^2 \theta} = \frac{r \cos^2 \theta \sin \theta}{r^2 \cos^4 \theta + \sin^2 \theta}$. При $(x, y) \rightarrow (0, 0)$ имеем $r \rightarrow 0$. Но при $r \rightarrow 0$ функция $f(x, y)$ стремится к нулю, так как $r$ в числителе имеет степень выше, чем в знаменателе.
Поэтому предел функции $f(x, y) = \frac{x^2 y}{x^4 + y^2}$ при $(x, y) \rightarrow (0, 0)$ равен нулю.
## Замечание
Метод приведения декартовых координат к полярным состоит в следующем:
1. Вычислить радиус-вектор точки $r$ по формуле:
$$r = \sqrt{x^2 + y^2}$$
2. Вычислить угол $\theta$ между положительным направлением горизонтальной оси и радиус-вектором точки по формуле:
$$
\theta = \begin{cases}
\arctan\left(\frac{y}{x}\right), & \text{если } x > 0, \\
\arctan\left(\frac{y}{x}\right) + \pi, & \text{если } x < 0, y \geq 0, \\
\arctan\left(\frac{y}{x}\right) - \pi, & \text{если } x < 0, y < 0, \\
\frac{\pi}{2}, & \text{если } x = 0, y > 0, \\
-\frac{\pi}{2}, & \text{если } x = 0, y < 0, \\
\text{не определено}, & \text{если } x = 0, y = 0.
\end{cases}
$$