Files

64 lines
4.5 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Поверхностные интегралы второго рода: определение, теорема существования (без доказательства), свойства. Вычисление поверхностного интеграла второго рода.
### Определение поверхностного интеграла второго рода
Поверхностный интеграл второго рода векторного поля $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$ по поверхности $S$, параметризованной как $(x(u, v), y(u, v), z(u, v))$ для $(u, v) \in D$, определяется как:
$$\iint_{S}\mathbf{F}\cdot d\mathbf{S}=\iint_{S}\mathbf{F}\cdot\mathbf{n}\,dS,$$
где $\mathbf{n}$ — единичный вектор нормали к поверхности $S$, а $d\mathbf{S} = \mathbf{n}\,dS$ — векторный элемент площади поверхности.
Если поверхность $S$ задана уравнением $z = f(x, y)$, то:
$$\iint_{S}\mathbf{F}\cdot d\mathbf{S}=\iint_{D}(-P\frac{\partial f}{\partial x}-Q\frac{\partial f}{\partial y}+R)\,dx\,dy,$$
где $D$ — проекция поверхности $S$ на плоскость $xy$.
### Теорема существования поверхностного интеграла второго рода
Теорема существования поверхностного интеграла второго рода утверждает, что если компоненты векторного поля $\mathbf{F}(x, y, z)$ непрерывны на поверхности $S$, то поверхностный интеграл $\iint_{S}\mathbf{F}\cdot d\mathbf{S}$ существует.
### Свойства поверхностных интегралов второго рода
1. **Линейность**:
- Если $\mathbf{F}$ и $\mathbf{G}$ — векторные поля, интегрируемые по поверхности $S$, то для любых констант $a$ и $b$:
$$\iint_{S}(a\mathbf{F}+b\mathbf{G})\cdot d\mathbf{S}=a\iint_{S}\mathbf{F}\cdot d\mathbf{S}+b\iint_{S}\mathbf{G}\cdot d\mathbf{S}.$$
2. **Аддитивность**:
- Если поверхность $S$ состоит из двух частей $S_1$ и $S_2$, то:
$$\iint_{S}\mathbf{F}\cdot d\mathbf{S}=\iint_{S_1}\mathbf{F}\cdot d\mathbf{S}+\iint_{S_2}\mathbf{F}\cdot d\mathbf{S}.$$
3. **Обращение направления нормали**:
- Если изменить направление нормали $\mathbf{n}$ на противоположное, то:
$$\iint_{S}\mathbf{F}\cdot(-\mathbf{n})\,dS=-\iint_{S}\mathbf{F}\cdot\mathbf{n}\,dS.$$
### Вычисление поверхностного интеграла второго рода
Рассмотрим пример вычисления поверхностного интеграла второго рода векторного поля $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ по поверхности $S$, заданной уравнением $z = x^2 + y^2$ над кругом радиуса $R$, центрированного в начале координат.
Сначала найдем нормаль к поверхности:
$$\mathbf{n}=\frac{\nabla(z-x^2-y^2)}{|\nabla(z-x^2-y^2)|}=\frac{(-2x)\mathbf{i}+(-2y)\mathbf{j}+\mathbf{k}}{\sqrt{1+4x^2+4y^2}}.$$
Теперь подставим все в формулу поверхностного интеграла второго рода:
$$\iint_{S}\mathbf{F}\cdot d\mathbf{S}=\iint_{S}\mathbf{F}\cdot\mathbf{n}\,dS=\iint_{D}(-2x^2-2y^2+z)\sqrt{1+4x^2+4y^2}\,dx\,dy,$$
где $D$ — круг радиуса $R$ на плоскости $xy$.
В полярных координатах $(r, \theta)$ область $D$ описывается как $0 \leq r \leq R$ и $0 \leq \theta \leq 2\pi$. Тогда:
$$\iint_{D}(-2x^2-2y^2+z)\sqrt{1+4x^2+4y^2}\,dx\,dy=\int_{0}^{2\pi}\int_{0}^{R}(-2r^2+r^2)\sqrt{1+4r^2}r\,dr\,d\theta.$$
Упростим интеграл:
$$\int_{0}^{2\pi}\int_{0}^{R}(-r^2)\sqrt{1+4r^2}r\,dr\,d\theta.$$
Теперь вычислим внутренний интеграл:
$$\int_{0}^{R}(-r^2)\sqrt{1+4r^2}r\,dr.$$
Для вычисления этого интеграла можно использовать численные методы или специальные функции.