Files
2025-02-15 15:47:50 +03:00

49 lines
5.4 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Свойства равномерно сходящихся рядов. Непрерывность суммы ряда. Теоремы о почленном интегрировании и почленном дифференцировании равномерно сходящегося функционального ряда.
## Свойства равномерно сходящихся рядов
### Непрерывность суммы ряда
Если функциональный ряд $\sum\limits_{n=1}^\infty f_n(x)$ *равномерно сходится* на множестве $D$, и все функции $f_n(x)$ *непрерывны* на $D$, то [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/10#^f4f31b|сумма ряда]] $S(x)=\sum\limits_{n=1}^\infty f_n(x)$ также *непрерывна* на $D$.
#### Доказательство
Пусть $\varepsilon > 0$. По определению [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/11#Равномерная сходимость функциональных рядов|равномерной сходимости]], существует такое число $N(\varepsilon)$, что для всех $n \geq N(\varepsilon)$ и для всех $x\in D$ выполняется $|S(x)-S_n(x)| < \frac \varepsilon 3$
Поскольку $f_n(x)$ *непрерывны*, то и [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/10#^2cb2e9|частичные суммы]] $S_n(x)$ *непрерывны*. Следовательно, для любого $x_0\in D$ существует такое $\delta>0$, что для всех $x\in D$ таких, что $|x-x_0|<\delta$, выполняется:
$|S_n(x)-S_n(x_0)| < \frac \varepsilon 3$
Тогда:
$|S(x)-S(x_0)| \leq |S(x)-S_n(x)| + |S_n(x)-S_n(x_0)| + |S_n(x_0)-S(x_0)| < \varepsilon$
Таким образом, $S(x)$ непрерывна на $D$.
### Почленное интегрирование
Если функциональный ряд $\sum\limits_{n=1}^\infty f_n(x)$ *равномерно сходится* на множестве $D$, и все функции $f_n(x)$ интегрируемы на $D$, то ряд можно интегрировать почленно:
$\int\limits_D \sum\limits_{n=1}^\infty f_n(x)dx = \sum\limits_{n=1}^\infty \int\limits_D f_n(x)dx$
#### Доказательство
Рассмотрим частичные суммы ряда $S_n(x)=\sum_{k=1}^{n}f_k(x)$. Поскольку ряд равномерно сходится, то:
$$
\int\limits_D S(x)dx = \int\limits_D \lim_{n\to\infty} S_n(x)dx = \lim_{n\to\infty} \int\limits_D S_n(x)dx = \lim_{n\to\infty} \sum\limits_{k=1}^n \int\limits_D f_k(x)dx = \sum_{n=1}^{\infty} \int\limits_D f_n(x)dx
$$
### Почленное дифференцирование
Если функциональный ряд $\sum\limits_{n=1}^\infty f_n(x)$ *равномерно сходится* на множестве $D$, и ряд из производных $\sum\limits_{n=1}^\infty f_n'(x)$ также *равномерно сходится* на $D$, то ряд можно дифференцировать почленно: $S'(x) = \sum\limits_{n=1}^\infty f_n'(x)$
#### Доказательство
Рассмотрим [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/10#^2cb2e9|частичные суммы ряда]] $S_n(x) = \sum\limits_{k=1}^n f_k(x)$. Поскольку ряд из производных равномерно сходится, то: $S'(x) = \lim\limits_{n\to\infty} S_n'(x) = \lim\limits_{n\to\infty} \sum\limits_{k=1}^n f_k'(x) = \sum\limits_{n=1}^\infty f_n'(x)$
## Примеры
1. $\sum\limits_{n=1}^\infty \frac{\sin(nx)}{n^2}$
Оценим $|f_n(x)|$: $\left| \frac{\sin(nx)}{n^2} \right| \leq \frac 1 {n^2}$
Ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится, так как это [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/2#^e8e233|обобщенный гармонический ряд]] с $p=2>1$. Следовательно, ряд $\sum\limits_{n=1}^\infty \frac{\sin(nx)}{n^2}$ *равномерно сходится* на всей числовой прямой по [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/12#Признак Вейерштрасса|признаку Вейерштрасса]]**.
Поскольку все функции $\frac{\sin(nx)}{n^2}$ *непрерывны*, то и сумма ряда $S(x)=\sum\limits_{n=1}^\infty \frac{\sin(nx)}{n^2}$ *непрерывна*.
1. $\sum\limits_{n=1}^\infty \frac{\cos(nx)}{n^3}$
Оценим $|f_n(x)|$: $\left| \frac{\cos(nx)}{n^3} \right| \leq \frac 1 {n^3}$
Ряд $\sum\limits_{n=1}^\infty \frac 1 {n^3}$ *сходится*, так как это [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/2#^e8e233|обобщенный гармонический ряд]] с $p=3>1$. Следовательно, ряд $\sum\limits_{n=1}^\infty \frac{\cos(nx)}{n^3}$ *равномерно сходится* на всей числовой прямой по [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/12#Признак Вейерштрасса|признаку Вейерштрасса]].
Поскольку все функции $\frac{\cos(nx)}{n^3}$ *непрерывны*, то и сумма ряда $S(x) = \sum\limits_{n=1}^\infty \frac{\cos(nx)}{n^3}$ *непрерывна*.