Написан 1 раздел Экзамена по вышмату 2 курс 1 семестр

This commit is contained in:
Kirill
2024-12-05 20:29:15 +03:00
committed by Sweetbread
parent 0825ac9659
commit 74046e1857
24 changed files with 1180 additions and 0 deletions

View File

@ -0,0 +1,60 @@
# Степенной ряд. Первая теорема Абеля. Радиус сходимости. Интервал сходимости. Промежуток сходимости.
## Введение
Степенной ряд — это ряд вида $\sum_{n=0}^{\infty}a_nx^n$, где $a_n$ — коэффициенты, а $x$ — переменная.
## Степенной ряд
Степенной ряд имеет вид:
$\sum_{n=0}^{\infty}a_nx^n$
где $a_n$ — коэффициенты, а $x$ — переменная.
## Радиус сходимости
Радиус сходимости степенного ряда $\sum_{n=0}^{\infty}a_nx^n$ — это число $R$, такое что ряд сходится для всех $|x|<R$ и расходится для всех $|x|>R$. Радиус сходимости можно найти с помощью формулы Коши-Адамара:
$R=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|a_n|}}$
## Интервал сходимости
Интервал сходимости степенного ряда — это интервал $(-R,R)$, где $R$ — радиус сходимости. Внутри этого интервала ряд сходится абсолютно.
## Промежуток сходимости
Промежуток сходимости степенного ряда — это интервал $(-R,R)$, включая возможные точки сходимости на границах интервала. Внутри промежутка сходимости ряд сходится абсолютно, а на границах сходимость ряда может зависеть от значений коэффициентов $a_n$.
## Первая теорема Абеля
Первая теорема Абеля утверждает, что если степенной ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится в точке $x=R$ (где $R$ — радиус сходимости), то он сходится равномерно на интервале $[0,R]$.
### Формулировка первой теоремы Абеля
Пусть степенной ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится в точке $x=R$. Тогда ряд сходится равномерно на интервале $[0,R]$.
### Доказательство
Рассмотрим частичные суммы ряда $S_n(x)=\sum_{k=0}^{n}a_kx^k$. Поскольку ряд сходится в точке $x=R$, то для любого $\epsilon>0$ существует такое число $N(\epsilon)$, что для всех $n\geq N(\epsilon)$ выполняется:
$|S(R)-S_n(R)|<\epsilon$
Теперь рассмотрим разность частичных сумм $S_m(x)-S_n(x)$ для $m>n$:
$|S_m(x)-S_n(x)|=|\sum_{k=n+1}^{m}a_kx^k|\leq\sum_{k=n+1}^{m}|a_kx^k|\leq\sum_{k=n+1}^{m}|a_kR^k|$
Поскольку ряд сходится в точке $x=R$, то и разность $\sum_{k=n+1}^{m}|a_kR^k|$ ограничена. Следовательно, последовательность $S_n(x)$ является фундаментальной (последовательность Коши), а значит, равномерно сходится на интервале $[0,R]$.
## Примеры
1. **Ряд $\sum_{n=0}^{\infty}\frac{x^n}{n!}$**:
Рассмотрим ряд $\sum_{n=0}^{\infty}\frac{x^n}{n!}$.
Найдем радиус сходимости:
$R=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|\frac{1}{n!}|}}=\infty$
Таким образом, ряд сходится для всех $x\in\mathbb{R}$.
2. **Ряд $\sum_{n=0}^{\infty}x^n$**:
Рассмотрим ряд $\sum_{n=0}^{\infty}x^n$.
Найдем радиус сходимости:
$R=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|1|}}=1$
Таким образом, ряд сходится для всех $|x|<1$ и расходится для всех $|x|>1$.