Ряд Фурье обычно используется для разложения периодических функций. Однако, для непериодических функций можно использовать интегральное преобразование Фурье.
**Интегральное преобразование Фурье** функции $f(x)$ определяется следующим образом: $F(\omega) = \int\limits_{-\infty}^\infty f(x) e^{-i\omega x}dx$, где $F(\omega)$ — преобразование Фурье функции $f(x)$.
**Обратное преобразование Фурье** позволяет восстановить функцию $f(x)$ из её преобразования Фурье $F(\omega)$: $f(x) = \frac 1 {2\pi} \int\limits_{-\infty}^\infty F(\omega) e^{i\omega x} d \omega$