Files
University-notes/1 курс/2 семестр/Вышмат/Вопросы.md

59 lines
9.9 KiB
Markdown
Raw Normal View History

2024-06-18 16:24:41 +03:00
# Раздел 1. Интегральное исчисление функций одной переменной
## Теория
1. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/1|Понятие неопределенного интеграла, его свойства]].
2. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/2|Таблица неопределенных интегралов]].
3. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/3|Замена переменных в неопределенном интеграле]].
4. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/4|Интегрирование по частям в неопределенном интеграле]].
5. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/5|Простейшие рациональные дроби. Разложение правильной дроби на простейшие. Интегрирование простейших рациональных дробей]].
6. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/6|Понятие определенного интеграла]].
7. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/7|Основные свойства определенного интеграла]].
8. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/8|Формула Ньютона-Лейбница]].
9. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/9|Замена переменных в определенном интеграле]].
10. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/10|Интегрирование по частям в определенном интеграле]].
11. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/11|Приложения определенного интеграла в геометрии: длина кривой, площадь криволинейной трапеции]].
12. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/12|Несобственный интеграл 1-го рода: определение, признак сравнения]].
13. [[1 курс/2 семестр/Вышмат/Билеты/1 раздел/13|Несобственный интеграл 2-го рода: определение, признак сравнения]].
## Практика
1. Уметь вычислять неопределенные и определенные интегралы с помощью замены переменной, интегрирования по частям.
2. Уметь интегрировать дробно-рациональные функции, а также выражения, содержащие тригонометрические функции.
3. Уметь вычислять длину кривой, а также площадь плоской фигуры.
4. Уметь вычислять несобственные интегралы 1-го рода и 2-го рода по определению, а также исследовать интегралы на сходимость.
# Раздел 2. Дифференциальное исчисление функций нескольких переменных
## Теория
1. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/1|Понятие функции двух переменных.]]
2. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/2|Определения предела функции двух переменных.]]
3. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/3|Арифметические свойства предела функции двух переменных.]]
4. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/4|Определение функции двух переменных, непрерывной в точке. Арифметические свойства непрерывных функций двух переменных.]]
5. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/5|Частные производные первого порядка, дифференциал первого порядка функции двух переменных: определения, арифметические свойства.]]
6. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/6|Уравнение касательной плоскости к поверхности.]]
7. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/7|Производная по направлению. Градиент.]]
8. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/8|Частные производные и дифференциалы высших порядков функции двух переменных.]]
9. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/9|Формула Тейлора для функции двух переменных с остаточным членом в форме Пеано.]]
10. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 2/10|Определение экстремума функции двух переменных. Необходимое условие экстремума. Достаточное условие экстремума.]]
2024-06-18 16:24:41 +03:00
## Практика
1. Уметь вычислять предел функции двух переменных.
2. Уметь вычислять частные производные и дифференциалы (первого и второго порядков) функции двух переменных.
3. Уметь записывать уравнение касательной плоскости к поверхности.
4. Уметь находить производную по направлению и градиент функции двух переменных.
5. Уметь разложить функцию двух переменных по формуле Тейлора в окрестности данной точки (например, $𝑓(𝑥, 𝑦) = 2𝑥^2 𝑥𝑦 𝑦^2 6𝑥 3𝑦, (𝑥_0, 𝑦_0) = (1, 2))$.
6. Уметь исследовать функцию двух переменных на экстремум.
# Раздел 3. Дифференциальные уравнения
## Теория
1. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/1|Понятие обыкновенного ДУ, порядок ДУ, решение ДУ.]]
2. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/2|Понятие ДУ 1-го порядка, решение ДУ, задача Коши, геометрический смысл ДУ и его решения. Понятия общего и частного решений для ДУ 1-го порядка.]]
3. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/3|Формулировка теоремы о существовании и единственности решения задачи Коши для ДУ 1-го порядка.]]
4. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/4|ДУ 1-го порядка с разделяющимися переменными: понятие, метод интегрирования.]]
5. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/5|Однородные ДУ 1-го порядка: понятия и метод интегрирования.]]
6. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/6|Линейные ДУ 1-го порядка. Теорема о структуре общего решения линейного неоднородного уравнения. Метод интегрирования линейного неоднородного уравнения (метод Лагранжа вариации произвольной постоянной).]]
7. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/7|ДУ в полных дифференциалах. Необходимое и достаточное условие уравнения в полных дифференциалах. Восстановление функции по ее полному дифференциалу.]]
8. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/8|ДУ второго порядка. Задача Коши.]]
9. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/9|Линейное однородное ДУ второго порядка с постоянными коэффициентами, метод Эйлера, характеристическое уравнение, построение фундаментальной системы решений. Теорема о структуре общего решения линейного однородного уравнения.]]
10. [[1 курс/2 семестр/Вышмат/Билеты/Раздел 3/10|Линейное неоднородное ДУ второго порядка с постоянными коэффициентами. Теорема о структуре общего решения линейного неоднородного уравнения. Метод вариации произвольных постоянных.]]
2024-06-18 16:24:41 +03:00
## Практика
1. Уметь решать ДУ 1-го порядка следующих типов: с разделяющимися переменными, однородные, линейные, уравнения в полных дифференциалах.
2. Уметь решать линейные неоднородные ДУ второго порядка с постоянными коэффициентами.