Files
University-notes/1 курс/2 семестр/Дискретка/Билеты/6.md
2024-06-22 15:01:47 +03:00

40 lines
3.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Алгебра Жегалкина. Свойства операции ⊕. Полиномы Жегалкина. Единственность полинома Жегалкина.
# **Алгебра Жегалкина**
\- алгебраическая система для описания логических функций
1. Используются константы, конъюнкция и Сумма по модулю 2
2. Нет отрицания
3. $<\{0,1\},\{\oplus,\wedge,0,1\}>$ - поле наименьшего размера
# Свойства $\oplus$:
- $x\oplus 0 = x$
- $x \oplus x = 0$, $x \oplus \bar x = 1$
- **Коммутативность**: $x \oplus y = y \oplus x$
- **Ассоциативность**: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- **Дистрибутивность**: $x \cdot (y \oplus z) = x \cdot y \oplus x \cdot z$
- Уравнение $x \oplus a = b$ имеет единственное решение $x = a \oplus b$
# Полином Жегалкина
1. Нет скобок
2. Нет одинаковых слагаемых
3. Одним из слагаемых может быть 1
4. 0 - полином, но не слагаемое
# Единственность полинома Жегалкина
###### Теорема.
Для любой логической функции существует единственный представляющий её полином.
###### Доказательство:
f - логическая функция
P(f) - её полином
- f представляется булевой функцией (например, [[1 курс/2 семестр/Дискретка/Билеты/3#^809b89|СДНФ]])
- В формуле заменяется каждое отрицание ($\bar x = x \oplus 1$) и дизъюнкция ($x \vee y = xy \oplus x \oplus y$)
- Раскрываются скобки, применяя дистрибутивный закон
- Каждая конкатенация превращается в элементарную конъюнкцию ($x \cdot x = x$)
- Одинаковые слагаемые отпадают ($x \oplus x = 0$)
Каждое слагаемое в полиноме имеет вид $x_{i_1}, x_{i_2}, \dots, x_{i_k}$ или 1. Каждая конъюнкция определяется подмножеством $\{i_1, i_2, \dots, i_k\}$ или $\varnothing$ множества $\{1, 2, \dots, n\}$. Следовательно, множество всех слагаемых содержит $2^n$ элементов
Для составления полинома требуется выбрать одно из $2^{2^n}$ подмножеств множества всех возможных слагаемых - полинома от переменных $x_1, x_2, \dots, x_n$. Столько же и функций от таких переменных, так что для каждой функции f существует представляющий её полином, и число функций = число полиномов, поэтому P - биекция. А значит, одного полинома хватает только для одной функции