Files
University-notes/2 курс/1 семестр/Вышмат/Билеты/2 раздел/36.md

38 lines
2.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Формула Грина. Вычисление площади плоской фигуры с помощью криволинейного интеграла.
### Формула Грина
Формула Грина утверждает, что для гладкой замкнутой кривой $C$, ограничивающей область $D$ на плоскости $xy$, и для непрерывно дифференцируемых функций $P(x, y)$ и $Q(x, y)$, определённых на $D$, выполняется равенство:
$$\oint_{C}(P\,dx+Q\,dy)=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\,dA.$$
### Доказательство формулы Грина
Доказательство формулы Грина основано на теореме о потоке векторного поля через замкнутую кривую и теореме о циркуляции векторного поля. Мы не будем приводить полное доказательство, но отметим, что оно включает использование теоремы Стокса и свойств дифференцируемых функций.
### Вычисление площади плоской фигуры с помощью криволинейного интеграла
Для вычисления площади плоской фигуры $D$, ограниченной замкнутой кривой $C$, можно использовать формулу Грина. Площадь $A$ фигуры $D$ можно вычислить с помощью криволинейного интеграла:
$$A=\frac{1}{2}\oint_{C}(x\,dy-y\,dx).$$
#### Пример
Рассмотрим пример вычисления площади круга радиуса $R$, центрированного в начале координат. Круг можно параметризовать как $(x(t), y(t)) = (R\cos t, R\sin t)$ для $t \in [0, 2\pi]$. Тогда криволинейный интеграл для вычисления площади будет:
$$A=\frac{1}{2}\oint_{C}(x\,dy-y\,dx)=\frac{1}{2}\int_{0}^{2\pi}(R\cos t\frac{dy}{dt}-R\sin t\frac{dx}{dt})\,dt.$$
Вычислим производные:
$$\frac{dx}{dt}=-R\sin t,$$
$$\frac{dy}{dt}=R\cos t.$$
Подставим их в интеграл:
$$A=\frac{1}{2}\int_{0}^{2\pi}(R\cos t\cdot R\cos t-R\sin t\cdot(-R\sin t))\,dt=\frac{1}{2}\int_{0}^{2\pi}(R^2\cos^2t+R^2\sin^2t)\,dt.$$
Упростим интеграл:
$$A=\frac{1}{2}\int_{0}^{2\pi}R^2\,dt=\frac{R^2}{2}\int_{0}^{2\pi}dt=\frac{R^2}{2}\cdot2\pi=\pi R^2.$$
Таким образом, площадь круга равна $\pi R^2$, что соответствует известной формуле для площади круга.