Highmath: edit

This commit is contained in:
2024-12-20 13:09:08 +03:00
parent 3c00f5f0b5
commit 537c87bc48
27 changed files with 411 additions and 714 deletions

View File

@ -3,43 +3,58 @@
## Почленное интегрирование степенных рядов
### Теорема о почленном интегрировании
Пусть степенной ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится на интервале $(-R,R)$. Тогда ряд можно интегрировать почленно на любом замкнутом интервале $[a,b]\subset(-R,R)$:
$\int_{a}^{b}\left(\sum_{n=0}^{\infty}a_nx^n\right)dx=\sum_{n=0}^{\infty}\int_{a}^{b}a_nx^ndx$
Пусть степенной ряд $\sum\limits_{n=0}^\infty a_nx^n$ сходится на интервале $(-R,R)$. Тогда ряд можно интегрировать почленно на любом замкнутом интервале $[a,b]\subset(-R,R)$:
$\int\limits_a^b \left( \sum\limits_{n=0}^\infty a_nx^n \right) dx = \sum\limits_{n=0}^\infty \int\limits_a^b a_nx^ndx$
### Доказательство
Поскольку ряд $\sum_{n=0}^{\infty}a_nx^n$ равномерно сходится на любом замкнутом интервале $[a,b]\subset(-R,R)$, то можно почленно интегрировать ряд:
$\int_{a}^{b}\left(\sum_{n=0}^{\infty}a_nx^n\right)dx=\int_{a}^{b}\lim_{N\to\infty}\sum_{n=0}^{N}a_nx^ndx=\lim_{N\to\infty}\int_{a}^{b}\sum_{n=0}^{N}a_nx^ndx=\lim_{N\to\infty}\sum_{n=0}^{N}\int_{a}^{b}a_nx^ndx=\sum_{n=0}^{\infty}\int_{a}^{b}a_nx^ndx$
Поскольку ряд $\sum\limits_{n=0}^\infty a_nx^n$ равномерно сходится на любом замкнутом интервале $[a,b]\subset(-R,R)$, то можно почленно интегрировать ряд:
$$
\int_a^b \left( \sum_{n=0}^\infty a_nx^n \right) dx =
\int_a^b \lim_{N\to\infty} \sum_{n=0}^N a_nx^ndx = \lim_{N\to\infty} \int_a^b \sum_{n=0}^N a_nx^ndx =
\lim_{N\to\infty} \sum_{n=0}^N \int_a^b a_nx^ndx =
\sum_{n=0}^\infty \int_a^b a_nx^ndx
$$
### Пример
Рассмотрим ряд $\sum\limits_{n=0}^\infty \frac{x^n}{n!}$.
Рассмотрим ряд $\sum_{n=0}^{\infty}\frac{x^n}{n!}$.
Найдем радиус сходимости:
$R=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|\frac{1}{n!}|}}=\infty$
Найдем радиус сходимости: $R = \frac 1 {\lim\limits_{n\to\infty} \sqrt[n]{\left| \frac 1 {n!} \right|}} = \infty$
Таким образом, ряд сходится для всех $x\in\mathbb{R}$. Почленно интегрируем ряд на интервале $[0,1]$:
$\int_{0}^{1}\left(\sum_{n=0}^{\infty}\frac{x^n}{n!}\right)dx=\sum_{n=0}^{\infty}\int_{0}^{1}\frac{x^n}{n!}dx=\sum_{n=0}^{\infty}\frac{1}{n!}\int_{0}^{1}x^ndx=\sum_{n=0}^{\infty}\frac{1}{n!}\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1}=\sum_{n=0}^{\infty}\frac{1}{n!(n+1)}=e-1$
$$
\int_0^1 \left( \sum_{n=0}^\infty \frac{x^n}{n!} \right) dx =
\sum_{n=0}^\infty \int_0^1 \frac{x^n}{n!}dx =
\sum_{n=0}^\infty \frac 1 {n!} \int_0^1 x^ndx =
\sum_{n=0}^\infty \frac 1 {n!} \left[ \frac{x^{n+1}}{n+1} \right]_0^1 = \sum_{n=0}^\infty \frac 1 {n!(n+1)} =
e-1
$$
## Почленное дифференцирование степенных рядов
### Теорема о почленном дифференцировании
Пусть степенной ряд $\sum_{n=0}^{\infty}a_nx^n$ сходится на интервале $(-R,R)$. Тогда ряд можно дифференцировать почленно на этом интервале:
$\left(\sum_{n=0}^{\infty}a_nx^n\right)'=\sum_{n=0}^{\infty}\left(a_nx^n\right)'=\sum_{n=1}^{\infty}na_nx^{n-1}$
Пусть степенной ряд $\sum\limits_{n=0}^\infty a_nx^n$ сходится на интервале $(-R,R)$. Тогда ряд можно дифференцировать почленно на этом интервале:
$\left( \sum\limits_{n=0}^\infty a_nx^n \right)' = \sum\limits_{n=0}^\infty \left( a_nx^n \right)' = \sum\limits_{n=1}^\infty na_nx^{n-1}$
### Доказательство
Поскольку ряд $\sum_{n=0}^{\infty}a_nx^n$ равномерно сходится на любом замкнутом интервале $[a,b]\subset(-R,R)$, то можно почленно дифференцировать ряд:
$\left(\sum_{n=0}^{\infty}a_nx^n\right)'=\lim_{N\to\infty}\left(\sum_{n=0}^{N}a_nx^n\right)'=\lim_{N\to\infty}\sum_{n=0}^{N}\left(a_nx^n\right)'=\lim_{N\to\infty}\sum_{n=1}^{N}na_nx^{n-1}=\sum_{n=1}^{\infty}na_nx^{n-1}$
Поскольку ряд $\sum\limits_{n=0}^\infty a_nx^n$ равномерно сходится на любом замкнутом интервале $[a,b]\subset(-R,R)$, то можно почленно дифференцировать ряд:
$$
\left( \sum_{n=0}^\infty a_nx^n \right)' =
\lim_{N\to\infty} \left( \sum_{n=0}^N a_nx^n \right)' =
\lim_{N\to\infty} \sum_{n=0}^N \left( a_nx^n \right)' =
\lim_{N\to\infty} \sum_{n=1}^N na_nx^{n-1} =
\sum_{n=1}^\infty na_nx^{n-1}
$$
### Пример
Рассмотрим ряд $\sum\limits_{n=0}^\infty \frac{x^n}{n!}$.
Рассмотрим ряд $\sum_{n=0}^{\infty}\frac{x^n}{n!}$.
Найдем радиус сходимости:
$R=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|\frac{1}{n!}|}}=\infty$
Найдем радиус сходимости: $R = \frac 1 {\lim\limits_{n\to\infty} \sqrt[n]{\left| \frac 1 {n!} \right|}} = \infty$
Таким образом, ряд сходится для всех $x\in\mathbb{R}$. Почленно дифференцируем ряд:
$\left(\sum_{n=0}^{\infty}\frac{x^n}{n!}\right)'=\sum_{n=1}^{\infty}\frac{nx^{n-1}}{n!}=\sum_{n=1}^{\infty}\frac{x^{n-1}}{(n-1)!}=\sum_{n=0}^{\infty}\frac{x^n}{n!}=e^x$
$$
\left( \sum_{n=0}^\infty \frac{x^n}{n!} \right)' =
\sum_{n=1}^\infty \frac{nx^{n-1}}{n!} =
\sum_{n=1}^\infty \frac{x^{n-1}}{(n-1)!} =
\sum_{n=0}^\infty \frac{x^n}{n!} =
e^x
$$