# Абсолютно сходящиеся ряды и их свойства ## Введение **Абсолютно сходящиеся ряды** — это ряды, для которых ряд из абсолютных значений их членов сходится. Абсолютная сходимость является более сильным свойством по сравнению с обычной сходимостью и имеет ряд важных свойств. ## Абсолютной сходимости Ряд $\sum\limits_{n=1}^\infty a_n$ называется **абсолютно сходящимся**, если ряд $\sum\limits_{n=1}^\infty |a_n|$ *сходится*. ## Свойства абсолютно сходящихся рядов ### 1. Абсолютная сходимость влечет за собой обычную сходимость Если ряд $\sum\limits_{n=1}^\infty a_n$ *абсолютно сходится*, то он также *сходится* в обычном смысле. Это следует из [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/7#^446f33|теоремы Коши]] о сходимости абсолютно сходящегося ряда. ### 2. Перестановка членов абсолютно сходящегося ряда Если ряд $\sum\limits_{n=1}^\infty a_n$ *абсолютно сходится*, то любая перестановка его членов также *сходится* и имеет ту же сумму. Это свойство не выполняется для условно сходящихся рядов (рядов, которые сходятся, но не абсолютно). ### 3. Линейность абсолютной сходимости Если ряды $\sum\limits_{n=1}^\infty a_n$ и $\sum\limits_{n=1}^\infty b_n$ *абсолютно сходятся*, то их линейная комбинация $\sum\limits_{n=1}^\infty (\alpha a_n + \beta b_n)$ также *абсолютно сходится* для любых констант $\alpha$ и $\beta$. ### 4. Произведение абсолютно сходящихся рядов Если ряды $\sum\limits_{n=1}^\infty a_n$ и $\sum\limits_{n=1}^\infty b_n$ *абсолютно сходятся*, то их произведение $\sum\limits_{n=1}^\infty c_n$, где $c_n = \sum\limits_{k=1}^n {a_k b_{n-k}}$, также *абсолютно сходится*. ## Примеры 1. $\sum\limits_{n=1}^\infty {(-1)^{n+1} \frac 1 {n^2}}$ Ряд из абсолютных значений $\sum\limits_{n=1}^\infty \frac 1 {n^2}$ *сходится*, так как это [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/2#^e8e233|обобщенный гармонический ряд]] с $p=2>1$. Следовательно, ряд $\sum\limits_{n=1}^\infty {(-1)^{n+1} \frac 1 {n^2}}$ *абсолютно сходится* и, следовательно, сходится в обычном смысле. 1. $\sum\limits_{n=1}^\infty {(-1)^{n+1} \frac 1 n}$ Ряд из абсолютных значений $\sum\limits_{n=1}^\infty \frac 1 n$ *расходится*, так как это [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/2#^ab323a|гармонический ряд]]. Следовательно, ряд $\sum\limits_{n=1}^\infty {(-1)^{n+1} \frac 1 n}$ *не является абсолютно сходящимся*, но он *сходится* по [[2 курс/1 семестр/Вышмат/Билеты/1 раздел/6#Признак Лейбница|признаку Лейбница]].